11,932 research outputs found

    The Hamilton-Waterloo Problem with even cycle lengths

    Full text link
    The Hamilton-Waterloo Problem HWP(v;m,n;α,β)(v;m,n;\alpha,\beta) asks for a 2-factorization of the complete graph KvK_v or KvIK_v-I, the complete graph with the edges of a 1-factor removed, into α\alpha CmC_m-factors and β\beta CnC_n-factors, where 3m<n3 \leq m < n. In the case that mm and nn are both even, the problem has been solved except possibly when 1{α,β}1 \in \{\alpha,\beta\} or when α\alpha and β\beta are both odd, in which case necessarily v2(mod4)v \equiv 2 \pmod{4}. In this paper, we develop a new construction that creates factorizations with larger cycles from existing factorizations under certain conditions. This construction enables us to show that there is a solution to HWP(v;2m,2n;α,β)(v;2m,2n;\alpha,\beta) for odd α\alpha and β\beta whenever the obvious necessary conditions hold, except possibly if β=1\beta=1; β=3\beta=3 and gcd(m,n)=1\gcd(m,n)=1; α=1\alpha=1; or v=2mn/gcd(m,n)v=2mn/\gcd(m,n). This result almost completely settles the existence problem for even cycles, other than the possible exceptions noted above

    Three undescribed pathogenic Phytophthora taxa from the south-west of Western Australia

    Get PDF
    The Phytophthora culture collection of the Vegetation Health Service of the Department of Environment and Conservation of Western Australia (WA) has been re-evaluated using DNA sequencing (Burgess et al., 2009). This has revealed many undescribed taxa previously classified as known morpho-species, one of which has recently been described as P. multivora (Scott et al., 2009). The aim of this study was to describe three of these taxa, all of which occur in WA native ecosystems. They were compared with both the morphological species to which they are most similar and their closest phylogenetic relatives. In addition, the pathogenicity of these taxa was assessed in glasshouse trials

    Coriolis force corrections to g-mode spectrum in 1D MHD model

    Get PDF
    The corrections to g-mode frequencies caused by the presence of a central magnetic field and rotation of the Sun are calculated. The calculations are carried out in the simple one dimensional magnetohydrodynamical model using the approximations which allow one to find the purely analytical spectra of magneto-gravity waves beyond the scope of the JWKB approximation and avoid in a small background magnetic field the appearance of the cusp resonance which locks a wave within the radiative zone. These analytic results are compared with the satellite observations of the g-mode frequency shifts which are of the order one per cent as given in the GOLF experiment at the SoHO board. The main contribution turns out to be the magnetic frequency shift in the strong magnetic field which obeys the used approximations. In particular, the fixed magnetic field strength 700 KG results in the mentioned value of the frequency shift for the g-mode of the radial order n=-10. The rotational shift due to the Coriolis force appears to be small and does not exceed a fracton of per cent, \alpha_\Omega < 0.003.Comment: RevTeX4, 9 pages, 4 eps figures; accepted for publication in Astronomy Reports (Astronomicheskii Zhurnal

    Location and Direction Dependent Effects in Collider Physics from Noncommutativity

    Full text link
    We examine the leading order noncommutative corrections to the differential and total cross sections for e+ e- --> q q-bar. After averaging over the earth's rotation, the results depend on the latitude for the collider, as well as the direction of the incoming beam. They also depend on scale and direction of the noncommutativity. Using data from LEP, we exclude regions in the parameter space spanned by the noncommutative scale and angle relative to the earth's axis. We also investigate possible implications for phenomenology at the future International Linear Collider.Comment: version to appear in PR

    Cosmology and two-body problem of D-branes

    Full text link
    In this paper, we investigate the dynamics and the evolution of the scale factor of a probe Dp-brane which move in the background of source Dp-branes. Action of the probe brane is described by the Born-Infeld action and the interaction with the background R-R field. When the probe brane moves away from the source branes, it expands by power law, whose index depends on the dimension of the brane. If the energy density of the gauge field on the brane is subdominant, the expansion is decelerating irrespective of the dimension of the brane. On the other hand, when the probe brane is a Nambu-Goto brane, the energy density of the gauge field can be dominant, in which case accelerating expansion occurs for p4p \leq 4. The accelerating expansion stops when the brane has expanded sufficiently so that the energy density of the gauge field become subdominant.Comment: 6 pages, 7 figures, reference added, accepted for publication in PR

    Neural signatures of strategic types in a two-person bargaining game

    Get PDF
    The management and manipulation of our own social image in the minds of others requires difficult and poorly understood computations. One computation useful in social image management is strategic deception: our ability and willingness to manipulate other people's beliefs about ourselves for gain. We used an interpersonal bargaining game to probe the capacity of players to manage their partner's beliefs about them. This probe parsed the group of subjects into three behavioral types according to their revealed level of strategic deception; these types were also distinguished by neural data measured during the game. The most deceptive subjects emitted behavioral signals that mimicked a more benign behavioral type, and their brains showed differential activation in right dorsolateral prefrontal cortex and left Brodmann area 10 at the time of this deception. In addition, strategic types showed a significant correlation between activation in the right temporoparietal junction and expected payoff that was absent in the other groups. The neurobehavioral types identified by the game raise the possibility of identifying quantitative biomarkers for the capacity to manipulate and maintain a social image in another person's mind

    Rydberg atom formation in strongly correlated ultracold plasmas

    Full text link
    In plasmas at very low temperatures formation of neutral atoms is dominated by collisional three-body recombination, owing to the strong ~ T^(-9/2) scaling of the corresponding recombination rate with the electron temperature T. While this law is well established at high temperatures, the unphysical divergence as T -> 0 clearly suggest a breakdown in the low-temperature regime. Here, we present a combined molecular dynamics-Monte-Carlo study of electron-ion recombination over a wide range of temperatures and densities. Our results reproduce the known behavior of the recombination rate at high temperatures, but reveal significant deviations with decreasing temperature. We discuss the fate of the kinetic bottleneck and resolve the divergence-problem as the plasma enters the ultracold, strongly coupled domain.Comment: 11 pages, 10 figure

    On non-perturbative corrections to the Kahler potential

    Get PDF
    We present the results of a detailed investigation into the consequences of adding specific string motivated non-perturbative corrections to the usual tree level Kahler potential in dilaton dominated scenarios. The success of the model is judged through our ability to obtain a realistic VEV for the dilaton < Re S > ~ 2, corresponding to the true minima of the scalar potential and being associated with a reasonable value for the SUSY breaking scale via the gravitino mass. The status of the so-called moduli problem is also reviewed in each of the ansatze studied. Those include previous proposals made in the context of both the chiral and the linear multiplet formalisms to describe gaugino condensation, and a new ansatz which shows explicitly the equivalence between the two.Comment: 11 pages, LaTex, uses psfig.sty with 4 figure
    corecore